
Introduction

An accurate and efficient raster line-
generating algorithm, developed by 

Bresenham, scan converts lines using only 
incremental integer calculations that can be
adapted to display circles and other curves.



Bresenham’s Line Algorithm
 An accurate, efficient raster line drawing algorithm  

developed by Bresenham, scan converts lines using 
only incremental integer calculations that can be 
adapted to display circles and other curves.

 Keeping in mind the symmetry property of lines, lets 
derive a more efficient way of drawing a line.

Starting from the left end point (x0,y0) of a given line , we step to 
each successive column (x position) and plot the pixel whose 
scan-line y value closest to the line path
Assuming we have determined that the pixel at (xk,yk) is to 
be displayed, we next need to decide which pixel to plot in 
column xk+1.





Bresenham Line Algorithm 
(cont)

 The difference between these 2 separations is

 A decision parameter pk for the kth step in the line 
algorithm can be obtained by rearranging above 
equation so that it involves only integer calculations

Choices are(xk +1, yk) and (xk+1, yK+1)
d1 = y – yk = m(xk + 1) + b – yk
d2 = (yk + 1) – y = yk + 1- m(xk + 1) – b

d1-d2 = 2m(xk + 1) – 2 yk + 2b – 1



Bresenham’s Line Algorithm
 Define

Pk = Δx ( d1-d2) = 2Δyxk-2 Δxyk + c

 The sign of Pk is the same as the sign of d1-d2, since Δx > 0.
Parameter c is a constant and has the value 2Δy + Δx(2b-1)
(independent of pixel position)

 If pixel at yk is closer to line-path than pixel at yk +1 
(i.e, if d1 < d2) then pk is negative. We plot lower pixel in such a 
case. Otherwise , upper pixel will be plotted.



Bresenham’s algorithm (cont)
 At step k + 1, the decision parameter can be evaluated as,

pk+1 = 2Δyxk+1 - 2Δxyk+1 + c

 Taking the difference of pk+ 1 and pk we get the following.
pk+1 – pk = 2Δy(xk+1- xk)-2Δx(yk+1 – yk)

 But, xk+1 = xk +1, so that
pk+1 = pk + 2Δy - 2 Δx(yk+1 – yk)

 Where the term yk+1-yk is either 0 or 1, depending on the sign 
of parameter pk



Bresenham’s Line Algorithm
 The first parameter p0 is directly computed

p0 = 2 Δyxk - 2 Δxyk + c = 2 Δyxk – 2 Δy + Δx (2b-1)

 Since (x0,y0) satisfies the line equation , we also have
y0 = Δy/ Δx * x0 + b

 Combining the above 2 equations , we will have
p0 = 2Δy – Δx

The constants  2Δy and 2Δy-2Δx are calculated once for each    
time to be scan converted



Bresenham’s Line Algorithm
 So, the arithmetic involves only integer addition and subtraction 

of 2 constants
Input the two end points and store the left end 
point in (x0,y0)

Load (x0,y0) into the frame buffer  (plot the first 
point)
Calculate the constants Δx, Δy, 2Δy and 2Δy-2Δx 
and obtain the starting value for the decision 
parameter as

p0 = 2Δy- Δx 



Bresenham’s Line Algorithm
At each xk along the line, starting at k=0, perform the 
following test:

If pk < 0 , the next point is (xk+1, yk) and 

pk+1 = pk + 2Δy

Repeat step 4 (above step) Δx times

Otherwise
Point to plot is (xk+1, yk+1) 

pk+1 = pk + 2Δy - 2Δx 







Application
One good use for the Bresenham line algorithm is for quickly drawing filled 

concave polygons (eg triangles). You can set up an array of minimum 
and maximum x values for every horizontal line on the screen. You then 
use Bresenham's algorithm to loop along each of the polygon's sides, 
find where it's x value is on every line and adjust the min and max 
values accordingly. When you've done it for every line you simply loop 
down the screen drawing horizontal lines between the min and max 
values for each line.

Another area is in linear texture mapping . This method involves taking a 
string of bitmap pixels and stretching them out (or squashing them in) 
to a line of pixels on the screen. Typically you would draw a vertical line 
down the screen and use Bresenham's to calculate which bitmap pixel 
should be drawn at each screen pixel.



Scope of Research

 Bresenham's algorithm draws lines
extremely quickly, but it does not
perform anti-aliasing. In addition, it
cannot handle any cases where the
line endpoints do not lie exactly on
integer points of the pixel grid.


